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Training Neural Networks with Weight Constraints

John R. McDonnell
NCCOSC, RDT&E Division
San Diego, CA 92152

ABSTRACT

Hardware implementation of artificial neural
networks imposes a variety of constraints. Finite
weight magnitudes exist in both digital and analog
devices. Additional limitations are encountered due
to the imprecise nature of hardware components.
These constraints can be overcome with a stochastic
global optimizationstrategy which effectively searches
the range of the weight space and is robus: 10
quantization and modeling errors.  Evolutionary
programming is proposed as a solution to training
networks with these constraints. This work
investigates the use of evolutionary programming in
optimizing a network with weight constraints.
Comparisons are made to the backpropagation
training algorithm for networks with both
unconstrained and hard-limited weight magnitudes.

INTRODUCTION

Hardware implementation of neural
networks poses many challenges. The
magnitude constraint imposed by
implementing neural network weights in
electronic devices artificially constrains the
range of the weight space over which the
search takes place. Further, standard off-
line training approaches may produce poor
results due to the imprecise nature of analog
devices. This work investigates the use of
a stochastic multi-agent search strategy for
optimizing feed-forward, fully connected,
neural networks. An  evolutionary
programming (EP) search strategy s
proposed as a weight adaptation scheme
which addresses these constraints.

A variety of adaptation difficulties can be
associated with hardware implementation of
neural networks. Hardware issues which
greatly affect learning include finite
magnitude weights, quantization error and
imprecise knowi-dge of the activation
function. Weight and node perturbation
strategies have been suggested [1,2] as an
alternative to using error back-propagation
for training analog implementations. These
strategies provide an empirical gradient
descent approach given imprecise a priori
knowledge of the analog activation function
In studying quantization error, Xie and Jabri
[3,4] have applied a statistical model to
determine the effects of quantization error in
digital implementations.

A modified weight perturbation strategy has
been developed (4] as an empirical gradient
training technique for digital
implementations. As pointed out in [4],
quantized weight values represented by a
low number of bits can lead to local minima
which are flat plateaus. Thus, a gradient
type search may yield poor training
performance for a digital implementation.
To overcome this limitation, Xie and Jabrn
incorporate a stochastic mechanism which
results in a "Combined Search” (CS)
algorithm. The CS algorithm alternates
between the modified weight perturbation
technique and a partial random search
(PRS). The PRS is applied to only one
dimension of the weight space wherein a
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single weight 1s randomly chosen from a
unitorm distribution over a predetermined
range. The randomly chosen weight is kept
if a4 lower network error 1s achieved.

The ability to avoid local minima is but one
advantage I1n using a stochastic search
technique. Other advantages include the
applicability of stochastic traiming to any
tvpe of architecture regardless of
connectivity, activation function continuity,
and a priori knowledge of the device
characteristics.

Neural network training using stochastic
methods is not uncommon.  Simulated
annealing has been applied to both
feedforward [5] and Hopfield [6,7]
networks.  Convergence aspects of the
simulated annealing cooling schedule have
been addressed by Geman and Geman [8].
Genetic algorithms [9] offer yet another
stochastic method for training neural
networks. A probabilistic backpropagation
technique has been developed for hard-
limited activation nodes [10]. Fogel er al.
(11,12] have taken an evolutionary
programming approach to stochastically
evolve network weights.

This work takes advantage of the
evolutionary programming paradigm to
evolve network weights which are subject to
weight magnitude constraints.  Problems
associated with quantization errors and
transfer characteristics of the device can also
be addressed with this type of training. A
comparison is made with backpropagation
training for both unconstrained and
constrained weights. For situations where
the device transfer characteristics are known
with a high degree of certainty, a modified
backpropagation technique is developed and
presented in the next section.

MODIFIED BACK PROPAGATION

If werght magnitudes are hard-timied witmn
the backpropagauon traimng  algonthm,
optimization will occur along the projections
of the saturated weight space dimensions.
In essence, optimization wiil take piace n
the image of the unconstrained weight space.
To avoid being limited to the weight space
between /m saturated weights and an (n-m)
dimensional rnidge (if onc exists), a modified
backpropagation {MBP) training algorithm 1s
developed. Wasserman [13] has pronosed
function mapped weights as a means to
reduce neuron saturation. [f function
mapped weights are employed, then the
function which maps the training weights to
the implementation weights must be
incorporated into the training algonthm.
Figure | shows a perceptron which
implements function mapped weights as
opposed to the weight values directlv. The
weight values can be determined via offline
training and implemented by the weight
mapping function.
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Figure 1. A perceptron with function
mapped weights g(w).




Rt a4

The training algorithm can be derived using
the same approach deveioped for
backpropagation {14]. The pnmary
difference 1s that the weight mapping
function g must be incorporated in the
training algorithm. This is done by defining
the gradient as

0E _ 9E dg(w)
aw  dgw) aw

where E is the network sum squared error
and g:R—»R. Using the generalized delta
rule for feedforward networks with
backpropagation of error as outlined in [14],
the weight adaptation equations can be
written as

MBP ouwtput layer

Aw, = 1 f, (net)(t,-0)8, (W,)0;

MBP hidden layer

Aw, =9 j;f(netj)[; 8, 8(wplg, (wo,

where

. _ 98(w)

I
awﬂ.

the remaining terms are defined in [14].

It is easily verified that the above learning
law reduces to the standard generalized delta
learning rule if the weight mapping function
is replaced with the weights themselves
(i.e., gw) = w, g'tw) = )

BP output layer

Aw, =7 Sy (net)(t,-0,)0,

BP hidden laver

- ine i P , ‘
Aw, =g e (;)iz SRS

Similar to the activation function 7. the
weight mapping function g must also be
continuousiy differentiable. Additionally, g
should also be bipolar. Since a biased
sigmoid function satisfies this requirement,
it is a likely (though not necessarily optimal)
candidate to be used for function mapped
weights

If the activation f is a unipolar sigmoid
function and the weight mapping g is a
bipolar sigmoid function of magnitude X

giw) = 2K[(1+e™)" - 1]
then the weights are modified according to

Output layer
Aw, = 7 0(1-0)(,-0) o

« fetw) + K [K - g0v,)]

Hidden layer
4
Aw, =7 0(1 -oj)[}; o (1 —ok)(rfok)g(w,q)}

« el8m) + K|[K - g0w,)]

The MBP algorithm effectively constrains
the weight set magnitudes while maintaining
the integrity of the gradient descent search.
The ability to implement such a training
technique is predicated on modeling the
transfer characteristics of the activation and
weight mapping functions. If accurate
device modeling is not feasible, then
alternative training methods should be
employed.
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EVOLUTIONARY PROGRAMMING

Evolutionary programming ‘EP) is a nco-
Darwinian search paradigm suggested by
Fogel er al. [15]. The application of EP as
a meural net training techiaque has been
investigated by Fogel er al. [11,12]. EP1s
used in these investigations since it
addresses the difficulties imposed with
hardware implementation: finite weight
magnitudes and imprecise knowledge of the
device characteristics and parameters. The
main benefit of using an EP approach is that
it provides an efficient global search of the
constrained  weight space. While
Stinchcombe and White [16] have shown
that multilayer feedforward networks with
bounded weights and various classes of
activation functions can learn arbitrary
mappings, they did not speciiy a particular
learming technique.

Other global stochastic search techniques
were considered. Genetic algorithms are
just a subset of the EP paradigm. The EP
paradigm does not restrict representation or
type of mutation process. Although GA
does use dramatically different mutations
(e.g., crossover mutation), it is easily
encornpassed by the LP method. The muit-
agent search of EP is preferred to the single-
agent approach of simulated annealing with
its various cooling schedules. However,
simulated annealing has been successfully
implemented at the device level as discussed

in [17].

The objective function of the EP training
approach is the same as that used in
backpropagation: minimize the error

function E = %LL, (i - 0,)° where p is the
pattern training set and £ is the number of
output nodes. A common metric is the
mean of E over the number of patterns
which will be referred to later as the MSE
of the network. This investigation assumes

fully connected feedtorward  networks.
However it should be noted that P could be
used to sumultaneousiy  evoive network
structure, connecuvily  and  connection
strengths.

An EP algonthm for trammng a neura
network can be described by the following
steps

1. Form an initial population of size N.
2. Assign a fitness score (0 each

element (nerwork) of the population.
3. Reorder the population based on ihe

number of wins generated from a
stochastic competition process.

4. Generate offspring of the best N
nerworks.

3. Laoop to step 2.

For this application, the initial population
was instantiated with weights ¢ U[-0.5, 0.5/.
Each member (network) in the population is
represented by a four dimensional weight
array

&, =w(parent]flayer|[from_node]fto_node]

Next, a cost is assigned to each network In
the population. As previously mentoned,
Ll . . . . .
the cost or objective function used in this
study is the same as that used for
backpropagation. The N members of the
population generate offspring according to

the perturbation

W =W +60W
o P ?

where typically 6W, ¢ N(O, Sq+E) with a
scaling coefficient S;. The scaling factor is
a probabilistic analog to the stepsize in
gradient descent methods. Figure 2 shows
the effect of different scaling factors in
training a 2-2-! neural net for the XOR

mapping.
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Figure 2. The effect of various scaling
factors on net training for XOR
Sfunction.

A pairwise competition is then held where
individual elements compete against
randomly chosen members of the
population. If network -&; is randomly
selected to compete against network &,, then
a win is awarded to @, if £, < E. The N
networks with the most wins are generate
offspring and the process is repeated.

RESULTS
Hard Limited Weights

An arbitrary mapping problem of
determining whether an <x,y> point is
contained within the unit circle has been
chosen for evaluating the effectiveness of
hard-limited backpropagation versus the EP
training approach. The training set consists
of 17 data points with a target value of 0.98
if the point is contained within the unit
circle and 0.02 if the point is outside the
unit circle. Figure 3 shows the distribution

Figure 3. Training points for unit circle
mapping problem.

of the points selected. A /7-8-1 network
was used in all experiments. A population
size of N = 50 parents with 50 offspring
was used for the EP runs. The effect of
hard limiting the weights in backpropagation
is shown in Figure 4. It can be seen that
backpropagation training (n= 0.5, a= 0.1)
can easily form the necessary hyperplane
decision surfaces to separate the convex unit
circle if no weight constraints are imposed.
This run resulted in 61% of the network
weights greater than a magnitude of 5. The
problem becomes more difficult if the
maximum weight magnitudes are hard-
limited at 5. The stepsize and momentum
coefficients were reduced to 0.1 and 0.05,
respectively, to prevent oscillation. The
constrained network reached a final MSE of
0.0297 with 36% of the weights within 1 %
of saturation.

The same experiment was repeated using
EP. Figure 5 shows the MSE for the best
member (network) in the population at each
generation for both constrained and
unconstrained weight magnitudes. Scaling
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Figure 4. Backpropagation training for
constrained and unconstrained networks.

factors of 100 and 10 were used for the
unconstrained and constrained networks,
respectively. The unconstrained trial
resulted in 91% of the weights greater that
a magnitude of 5. The constrained tral
reached a final MSE of 0.0208 with 36% of
the weights within 1% of maximum
magnitude.
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Figure 5. EP training results for
constrained and unconstrained networks.

Hard Limited Neuron Activations

Gradient  descent  algonthms  are not
amenable to raining muitilaver perceptrons
with  hard linated acuvation  functions.
Bartlett and Downs [10} have developed a
probabilistic backpropagation analog tor
training muitilayer perceptrons with hard-
limited activation functions. Since the EP
training technique is applicabie to any
architecture with any activation function, it
was applied to the unit ¢ircle mapping
problem with  hard-limited  activation
functions.

This set of experiments incorporated a
binary activation function

J1if x=0
ﬂx)'(Oif;KO

at each of the neuron outputs. Two tnals
were run to compare the effects of hard-
limiting the weight magnitudes. The results
of this experiment are shown in Figure 6.

-~ CONSTRAINED WEICHTS
C1a —m— UHCONS TRAINED WEIGHT S

0 00 200 00 4J 00 OO TAQ 4nC WD
GENERATION

Figure 6. EP training with hard limited
activation functions. Scale factor = 100.




Both experiments used a scaling factor of
100. The unconstrained weight network was
able to reach zero MSE within 1000
generations. Qut of the imitial 50 parents,
the best parent was incorrect on just 5
patterns.  MSE minimization takes place in
discrete steps due to the hard-limit activation
function. The unconstrained network had
94% of its weight values greater than 5.
Applying a weight magnitude bound at 5
resuited in a MSE of 0.0271 after 1000
generations (50,000 function evaluations).
None of the constrained network weights
were within 1 % of the saturation magnitude.

Hybrid Learning

Given that EP provides a global search with
asymptotic convergence properties, can
further error reduction be achieved using
gradient descent methods? This section
investigates applying backpropagation to
networks with bounded weight magnitudes
after an arbitrary number of global (EP)
iterations have been completed. Of course,
this is only applicable if the activation
function is accurately modeled. If the
activation function cannot be accurately
modeled, ther a hybrid EP/direction set
technique similar to that given by Waagen et
al. [18] can be used. Another approach
would be to incorporate the local methods
developed in [1, 2 and 4] in conjunction
with EP.

Figure 7 shows the training results for the
best member in the population over 3000
generations (150000 pattern set function
evaluations) for the unit circle mapping
problem. At the iteration 3000 the best
member in the population has a MSE of
0.0206. A backpropagation search with

hard-limited weight constraints was applied
to this network. This refinement yielded
approximately a 1.6% decrease in the MSE

after 10000 epochs as shown in bigure 8.
The results shown in Figure ¥ are sor
7=0.01 and «=0.002. It wo large a
stepsize is chosen the inmal MSE can
actually increase betore refinement takes
place.
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Figure 7. EP training results for
constrained network.
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Figure 8. Constrained backpropagation
refinement of ’best’ EP weight set from

Sigure 7.




DISCUSSION

This study shows that EP can vield results
as good as or better than 4 backpropagaton
training approach for doth bounded and
unbounded weights. EP 1s well suited tor
training neural networks subject to the
additional constraints  and  maccuracies
encountered in hardware implementations
whereas backpropagation might not be
appropriate. [f the activation functions are
well known, then a modified
backpropagation method can be used which
maintains the integrity of the gradient
descent search. It is not known at this time
if this technique increases the likelihood of
local minima or has other ramifications.
Hybrid learning can be applied to networks
regardless of how well the activation
function is known. The example given in
this work shows additional optimization
occurs after the global search has been
arbitrarily stopped. A reasonable approach
would be to incorporate a global and local
search in parallel.  The inability of
traditional methods to train a multilayer
perceptron with hard-limited activations can
be overcome using a stochastic method such
as EP.

Minsky and Papert [19] state that stochastic
methods will not “... work very well on
large-scale nets, except in the case of
problems that turn out to be of low order in
some appropriate sense".  Nevertheless,
EP provides a systematic way of training a
network subject to a variety of constraints
and lack of a priori knowledge where other
techniques fall short. However, the memory
requirements associated with stochastic
techniques which optimize a "population” of
networks may be substantial. Minsky and
Pappert go on to say that "The power of the
brain ... comes from the evolution (in both
the individual sense and the Darwinian
sense) of a variety of ways to develop new

mechanisms  and (o adapr older ones o
perform new  funcrions.”  This idea o
interacting  mechanisms can Heo caniy
incorporated into the paradizm of srmulated
evoluton [15].
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